Đề kiểm tra chương I môn Giải tích 12 (Có đáp án)

I/MỤC ĐÍCH YÊU CẦU:

Kiến thức: Giúp kiểm tra việc ứng dụng đạo hàm và giới hạn để xét tính đơn điệu, cực trị, giá trị lớn nhất, bé nhất của hàm số và các đường tiệm cận của đồ thị, từ đó khảo sát sự biến thiên và vẽ đồ thị hàm số

Giúp thầy và trò nắm được thông tin ngược từ đó điều chỉnh hoạt động dạy và học

Kỷ năng Kiểm tra kỷ năng tính toán ,vận dụng để khảo sát và vẽ đồ thị hàm số

Tư duy và thái độ : Rèn năng lực tư duy logic, độc lập sáng tạo qua việc phân tích vận dụng cho từng bài toán cụ thể

II /MA TRẬN HAI CHIỀU (40% trắc nghiệm ,60% tự luận )

doc 4 trang minhvy 18/01/2026 190
Bạn đang xem tài liệu "Đề kiểm tra chương I môn Giải tích 12 (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

Tóm tắt nội dung tài liệu: Đề kiểm tra chương I môn Giải tích 12 (Có đáp án)

Đề kiểm tra chương I môn Giải tích 12 (Có đáp án)
 Ngày soạn : 10/8/2008
 ĐỀ KIỂM TRA CHƯƠNG I (Giải tích)
 ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ HÀM SỐ
 I/MỤC ĐÍCH YÊU CẦU:
 Kiến thức: Giúp kiểm tra việc ứng dụng đạo hàm và giới hạn để xét tính 
 đơn điệu, cực trị, giá trị lớn nhất, bé nhất của hàm số và các đường tiệm cận 
 của đồ thị, từ đó khảo sát sự biến thiên và vẽ đồ thị hàm số 
 Giúp thầy và trò nắm được thông tin ngược từ đó điều chỉnh hoạt động dạy 
 và học
 Kỷ năng Kiểm tra kỷ năng tính toán ,vận dụng để khảo sát và vẽ đồ thị 
 hàm số
 Tư duy và thái độ : Rèn năng lực tư duy logic, độc lập sáng tạo qua việc 
 phân tích vận dụng cho từng bài toán cụ thể
 II /MA TRẬN HAI CHIỀU (40% trắc nghiệm ,60% tự luận )
 Mứcđộ Nhận biết Thông Vận dụng Vận dụng TỔNG
 hiểu thấp cao
Nộidung TN TL TN TL TN TL TN TL
Tính đơn điệu 1 1 1 3
của hàm số 0.5 0.5 0.5 1.5 
Cực trị của 1 1 2
hàm số 0.5 0.5 1
Giá trị lớn 1 1 2
nhất ,bé nhất 
của hàm số 0.5 2 2.5
Đường tiệm 1 1 2
cận của đồ thị 
hàm số 0.5 0.5 1
Khảo sát sự 1a 2
biến thiên ,vẽ 1b 
đồ thị hàm số 4 4
TỔNG 3 3 1 2 1 1 11
 1.5 1.5 0.5 4 0.5 2 10 
 III/ NỘI DUNG ĐỀ
 A/TRẮC NGHIỆM 
 Câu 1 Hàm số y = 2x2 -3x đồng biến trên khoảng : 
 4 3 3 
 A/ ; B/ ; C / ; D/ ( ; )
 3 4 4 
 Câu 2 Hàm số y = 1/3x3 -1 đạt cực trị tại điểm :
 A/ x =1 B/ x = -1 C/ x =0 D/ không có cực trị
 2
 Câu 3 Tiệm cận xiên của đồ thị hàm số y = x 3x 4 có phương trình là:
 2x 1 ĐÁP ÁN
 A/TRẮC NGHIỆM 
 1-C 2-D 3-D 4-B 5-D 6-C 7-B 8-A
 B/TỰ LUẬN
 ĐÁP ÁN Điểm Điểm
Câu1a(2đ5) Câu 2(2đ)
 -Tập xác định D=R 0.25 -Tập xác định 
 -Sự biến thiên D=R\{- + k2 , k Z }
 -Giới hạn lim y ,lim y 0.25 2
 Bảng biến thiên Đặt t=sinx, đk -1< t 1 0.25
 y’= 3x2 + 6x 0.25 Hàm số thành :
 2 2
 y’= 0 -> 3x + 6x =0 y = f(t)= t t 1
 x=0 ; x=-2 0.25 t 1
Bảng biến thiên: (-1< t 1) 0.25
 0.5 t 2 2t
 t - -2 0 + f’(t)=
 y’ + 0 - 0 + (t 1)2 0.25
 y - 5 1 + t 0 
 f’(t)= 0  
 t 2 0.25
 - Đồ thị Bảng biến thiên: 
 * Toạ độ điểm uốn (-1;3) 0.25 t -1 0 1
 * Giao điểm trục tung (0;1) f’(t) P - 0 +
 0.25
 * Giao điểm trục hoành f(t) P 1
 * Vẽ đồ thị -Nhận xét 0.5 0.5
 Kết luận :
Câu 1b(1đ5)
 Minf(t) =1 khi t = 0(t 1;1 )
 * Biến đổi pt x3 +3x2 + m =0  0.25
 thành x3 +3x2 +1 = 1- m 0.25 Min y =1 khi x= k ,k Z 0.25
 * Lập luận số nghiệm pt x3 
+3x2 + m =0 là số giao điểm của 0.25
đt y =1-m và đồ thị hàm số
 y = x3 +3x2 +1
 * 1-m 5 
 * m > 0 hoặc m < -4
 KL : Ptrình có 1 nghiệm 
 * 1-m = 1 hoặc 1-m = 5 
 * m = 0 hoặc m = -4
 KL : Ptrình có 2 nghiệm 1.0
 * 1<1-m < 5 
 * -4<m < 0 
 KL : Ptrình có 3 nghiệm 

File đính kèm:

  • docde_kiem_tra_chuong_i_mon_giai_tich_12_co_dap_an.doc